
Abstract-Auscultation is an attractive, simple, and 
noninvasive method for the diagnosis of cardiovascular and 
pulmonary disorders. However, heart sounds contaminates 
severely lung sound recordings. The results of our previous 
researches indicated that the Laplacian 
electrocardiographic signal (LECG) could be used as a 
reference for adaptive filtering to reduce heart sounds. In 
this paper, an integrated platform including an electronic 
stethoscope, an automated gain control (AGC), and an 
adaptive algorithm, has been developed to process the 
signal in real time. The AGC algorithm allows amplifying 
the LECG signal in different scales to solve the problem of 
relative weak LECG signals at right chest. The 
experimental result shows that the heart-noise reduction at 
right chest is improved from 43% reported early to 75%. 
The overall heart sound reduction by our new scheme 
ranges from 75% to 83% at different chest locations. 
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I INTRODUCTION 

 
In auscultation, heart sounds is an intrusive noise source in 
respiratory sounds. Simply using filtering technique cannot 
reject the unwanted signal, i.e. interference, effectively due to 
the overlapping in their spectra. Adaptive filtering may be the 
most suitable method to reduce intelligently the unwanted heart 
sounds in lung sound recordings. Nevertheless, adaptive 
scheme requires a “noise only” reference signal. In previous 
research [1], electrocardiographic (ECG) signal can be the 
reference signal, and this technique reduces the heart sounds by 
50-80 percent. However, this technique requires at least two 
extra sensors to pick up the reference signal such as the lead II 
ECG. Another approach is to extract the “noise only” reference 
signal by a delayed version of original signal [2]. After the 
complex signal processing [3], a satisfactory result can be 
obtained. However, this scheme requires huge computation 
ability. Thus, it is difficult to implement those methods in a 
stethoscope for the real time applications. 

 
In this work, Laplacian ECG (LECG) [4] is used for the ‘noise 
only’ reference signal rather than standard ECG. Both the 
electronic signal – Laplacian ECG, and the acoustic signal – 
lung sounds mixed with heart sounds can be picked up by a 
newly designed stethoscope. A simple adaptive filtering, least-
mean-square (LMS) is used to eliminate the interference. All 

hardware and software designs have been integrated together to 
make a single device to process the signal in real time (Fig. 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Stethoscope block diagram 

 
Using the new stethoscope, lung sounds without heart sound 
interference have been obtained successfully. Moreover, the 
LECG waveform can be observed at the same time.   
 

II. SIGNAL PRE-PROPRESSING 
 
Two different signals, acoustic signal and electronic signal are 
picked up by a new type stethoscope. Raw acoustic signal was 
band-pass filtered from 25Hz to 1000Hz. The operational 
amplifier (Linear Technology LT1013) was used with the gain 
factor of 40. Raw LECG was filtered by a band-pass filter with 
the bandwidth of 5Hz to 500Hz, and the gain factor of 1000. 
The high input impedance (10GΩ) of the amplifier (BURR-
BROWN INA118 and LT1013) [5, 6] makes it insensitive to 
fluctuations of the skin-electrode impedance. Thus, the skin 
preparation before auscultation is not necessary. Both pre-
processed signals are used as inputs to adaptive filtering 
 

III. ALGORTHM & IMPLEMENTATION 
 
The pre-processed signals were digitized by the Labview with a 
build-in analogue-to-digital converter at the sampling rate of 
3000Hz. The algorithm was implemented on a Labview 
platform in IBM-compatible PC.  
 
A) Automated Gain Control (AGC) 
 
The pre-processed LECG can be used as a reference signal in 
adaptive filtering method. To make a good estimation of heart 
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sounds, the amplitudes of the LECG signals should be kept 
constant from beat to beat at different locations. However, the 
strength of LECG signal in the human body is different from 
the left chest to the right chest. The signal acquisition at the left 
chest may be 10 times larger than that at the right side. The 
fluctuated heart sounds reduction on different auscultation 
locations in our previous research indicates the needs of a stable 
LECG signal [7].  
 
Another problem in the LECG signal is over-amplification. It is 
difficult to adjust the gain factor manually in the LECG signal 
due to the amplitude variation in different chest locations. The 
over-amplified LECG signal will saturate the adaptive filter. As 
a result, the LMS algorithm may never converge to the 
minimum-mean-square error (MMSE).    
 
The AGC algorithm (Fig. 2) amplifies the LECG signal in 
different scale according to the amplitude of the signal itself. 
The algorithm finds a maximum value among the data set to be 
a denominator. To smooth the signal, up to 3 denominators in 3 
different data sets (present data set, last data set, and the data 
set before the last one) were founded, and stored in an array. 
The maximum value in the denominator array is a final 
denominator. All data in the present data set were divided by 
this value.  
 
 
    
 
 
 
 
 
 
 
 
 
 

Fig. 2 Block diagram of the Automated Gain Control (AGC) 
 
After the automatic gain control algorithm, the data set in 
different auscultation locations could be adjusted to a proper 
amplitude level as shown in Figure 3 and Figure 4.  
 

 
Fig. 3 Example of adjusted LECG signal at the left chest 

  

 
Fig. 4 Example of adjusted LECG signal at the right chest 

B) Adaptive Filtering  
 
In this research, a simple adaptive algorithm, the time-varying 
finite impulse response (FIR) filter of LMS algorithm was used 
[8]. The LMS algorithm updates the filter coefficients based on 
the method of steepest descent. It was noted that the LECG 
signal has only one spike corresponding to the first heart sound. 
To eliminate the effects corresponding to the first and second 
heart sounds, a FIR filter with 1000-taps was used to cover the 
time separation in both sounds. By trial and error, a proper 
value of step size is chosen to be 0.001.  

 
IV. EXPERIMENTAL RESULTS 

 
Four different locations of five male and healthy subjects were 
chosen for the experiments. The recording locations include top 
left, middle left, low left, top right, middle right, and low right 
of the front chest. Each collected signal with the length of 10 
seconds was recorded to exam the reduction of heart sounds as 
shown in Figure 5.  

 

 
 

Fig. 5. Examples of signals: (a) Raw LECG, (b) Raw Heart and 
Lung Sounds, (c) Estimated Heart Sounds, and (d) Estimated 
Lung Sounds. 
 
The estimated breath and heart sound are given in Fig. 5(c) and 
(d). It is clear that the heart sounds was almost removed 
completely. The average results of experiments at six locations 
on the five subjects are shown in Table.1. Heart sound 
reduction is from 75% to 83%. Only about 43% reduction of 
heart sound at right chest could be achieved early without the 
AGC algorithm [7], because the LECG signal from right chest 
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was very weak. The heart sound reduction level is now similar 
at different locations after introducing AGC and adaptive 
algorithms. Among six testing locations, the middle right 
position is still the worst case in heart sounds reduction; even in 
this worst case, over 75% of heart artifacts reduction can be 
reached. The experimental results of each subject under the 
condition of holding breath are summarized in the same table 
for reference. 

 
Table. 1. 

Experimental Results 
Location Heart Sounds Reduction 

(normal breath) 
Heart Sounds Reduction 

(holding breath) 
Top left 82.76% 85.55% 

Middle left 78.12% 82.88% 

Low Left 80.54% 85.26% 
Top right 78.37% 81.13% 

Middle right 75.13% 80.23% 
Low right 76.22% 82.97% 

Note: heart sounds reduction equation (1) based on the energy 
difference between the estimated heat sounds and raw mixed 
sounds: 
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where y is the component of raw mixed sounds and x is the 
component of estimated heart sounds.  
 

V. CONCLUSION 
 
For real-time auscultation, an AGC with adaptive algorithm has 
been implemented for electronic stethoscopes application. As a 
result, a convenient and effective heart sounds reduction 
electronic stethoscope has been proposed in this work. This 
scheme may facilitate the extraction and interpretation of the 
breath sounds.  
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